
Refinery:
Model generation with
partial model refinement

Kristóf Marussy, Oszkár Semeráth,
Attila Ficsor, Dániel Varró

https://refinery.tools

Modeling with Graphs

Refinery@FAME24

• Graph based models are widely used in software engineering

• Testing, benchmarking or design space exploration scenarios

Sagiv, M., Reps, T., & Wilhelm, R. (2002). Parametric shape analysis via 3-valued logic.

Data structuresSystem models

Databases Test environments

https://github.com/BerkeleyLearnVerify/Scenic

Generating (consistent | realistic | diverse | scalable) models

2

Hands-on demo

Refinery@FAME24

• Code examples available at
https://refinery.tools/learn/tutorials/project/

• Watch out for numbered code examples!

3

→ Example 1

→ Example 1

https://refinery.tools/learn/tutorials/project/
https://refinery.tools/learn/tutorials/project/
https://refinery.tools/learn/tutorials/project/
https://scroll-to-section/#1-metamodel-from-the-mde-hands-on

4

• Typical modeling workflow: metamodel → instance model

• Example: Tasks, people, and teams in a project

Graph Structure: Project

Refinery@FAME24

tasks [0..*]

Metamodel Instance Model

4

Project

Task Team

PersonEffort

teams [0..*]

effort
[1..*]

people
[1..*]

dependsOn
[0..*]

person [1]effort [0..*]

→ Example 2

→ Example 2

https://scroll-to-section/#2-metamodel-extended-with-dependencies-and-teams

5

• Typical modeling workflow: metamodel → instance model

• Example: Tasks, people, and teams in a project

Graph Structure: Project

Refinery@FAME24

tasks [0..*]

Metamodel Instance Model

5

Project

Task Team

PersonEffort

teams [0..*]

effort
[1..*]

people
[1..*]

dependsOn
[0..*]

person [1]effort [0..*]

Refinery@FAME24

Architecture of a generator:

• Input: Problem Specification
Defines the structure of the models
Defines the consistency constraints

• Input: Search Parameters
Configures the generation process

• Output: Models
Sequence of consistent models

• Output: Inconsistency
Proving that there are no such consistent model

Consistent Graph Generation

Models

SAT

𝑴𝟏

Model
Generator

Specification

Parameters

𝑴𝟐

𝑴𝟑

…

𝑴𝒏+𝟏 

UNSAT

6

• Define classes (nodes) and relations (edges)

Domain specification (metamodel)

• Seed partial model to extend (with reasoning)

4-valued partial model specification

• Graph query language (inspired by Datalog / VIATRA Query)

Constraint specification

• Bounds on how many nodes an instance model needs to contain

Graph generation parameters

Overview of Refinery Demo

Refinery@FAME24 7

Domain-specific
partial models
4-valued logic for reasoning about graph models

Refinery@FAME24 8

Models and Partial Models

Refinery@FAME24

Input

Concrete models
(Labelled graphs)

Output

Abstract models
(Metamodel + Constraints)

Model generation: exploration process that gradually reduces uncertainty

9

Refinery@FAME24

• Represent all potential
extensions with uncertainty

• Logic abstraction:

TRUE | False |
Unknown | Error

– 4-valued exists:
added or removed

– 4-valued equals:
merging or splitting

• Refinement:
reduces uncertainty
→ concrete models

Partial Modeling with 4-valued Logic

10

→ Example 3

→ Example 3

https://scroll-to-section/#3-partial-modeling

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File target(link,img):true.

11

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

root(git, link):false.

12

Uncertain reference
any combination may appear

target(link,img): unknown.
target(link,main):unknown.

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target
project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

13

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

main
Dir
File

Uncertain type
May or may not have the type

Dir(main): unknown.

14

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

Invalid value
e.g., forbidden loop

target(link, link):error.

15

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

16

Uncertain existence
object may be removed

exists(link):unknown.

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

17

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

child

target

18

Uncertain existence
object may be removed

exists(link):unknown.

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

equals

target

Uncertain equivalence
equals(main,main):
 unknown.

19

main
File

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

child

child

link
File
Symlink

child

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

clone 1
File clone 2

File

clone 3
File

child

child

target

20

Uncertain equivalence
equals(main,main):
 unknown.

Model type systems
as partial models

→ Demo

Refinery@FAME24

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

21

Refinery@FAME24 22

• Represent all potential extension with uncertainty

• Logic abstraction: TRUE | False | Unknown | Error
– 4-valued exists: added or removed

– 4-valued equals: merging or splitting

• Refinement: reduces uncertainty → concrete models

Partial modeling with 4-valued logic

git
FileSystem img

File

main
File

child

child

link
File
Symlink

child

target

project
Dir
File

root child

child

src
Dir
File

resources
Dir
File

22

Refinery@FAME24

• Model generation is executed with respect to model refinement

E.g.: person(_,_):unknown
+true

person(_,_):true

person(_,_):true
+false

person(_,_):error

Refinement: 4-valued Logic

Unknown

TrueFalse

Error

re
fi

n
e

m
e

n
t

Inconsistent

Concrete

Incomplete

Go back

Stop

Go forward

23

Constraint specification
Using graph queries

Refinery@FAME24 24

Refinery@FAME24

• Constraints are continuously reevaluated

• Automatically searching for valid models by
applying refinements

• Search is parametrized
– Number of different solutions

– Difference between the solutions (non-isomorphic)

– Random seed

• Scope: ”size of the models”

Search Parameters for Model Generation
Start

Solution

25

of nodes # nodes by type# of new objects

→ Examples 4-5

→ Examples 4-5

https://scroll-to-section/#model-generation

Graph Constraint Evaluation

Graph Constraint

e
Entry

t1
Transition

t2
Transition

outgoing
Transition

outgoing
Transition

!equals

1
Transition

2
Transition

3
Transition

4
Transition

start
Entry

outgoing
Transition

outgoing
Transition

on
State

off
State

target

target

target

target

outgoing
Transition

outgoing
Transition

m1


Each match of the query is a certain
constraint violation (an error)

Refinery@FAME24

on off

start
1 2

3

4

26

→ Examples 6-7

→ Examples 6-7

https://scroll-to-section/#6-error-predicates

Partial Graph Constraint Evaluation

Graph Constraint

e
Entry

t1
Transition

t2
Transition

outgoing
Transition

outgoing
Transition

!equals

on off

start
1 2

3

4

1
Transition

2
Transition

3
Transition

4
Transition

start
Entry

outgoing
Transition

outgoing
Transition

on
State

off
State

target

target

target

target

outgoing
Transition

outgoing
Transition

m1


A may-match of a query is a potential error (which
may disappear)

Refinery@FAME24 27

Predicates vs Constraints

Predicates

• A graph query / predicate

• Composable: Reusable in other
predicates or constraints

• Positive condition

• Negative condition

Constraints (Error patterns)

• Capture the violating cases of a
domain constraint

• Each match is an error
(inconsistency)

• Predicates vs. Types
• 1-parameter predicate:

special node type

• 2-parameter predicate:
special edge type

Refinery@FAME24 28

→ Examples 8-9

→ Examples 8-9

https://scroll-to-section/#8-error-predicate-with-helper-predicate

Refinery elsewhere
Applications & appearances

Refinery@FAME24 29

v1
v2

v3

Automated Software Engineering

Graph analysis and synthesis

• Powerful mathematical
analysis techniques
for models

• Novel graph-based logic
solver for the automated
synthesis of design
alternatives

• Precision + Scalability

• Goal: solve problems with
complex structure

30

 validation

$$$ cost

 performance

%% coverage

synthesis

analysis

Recent Results

• Research project
VERIFIABLE AI/ML TECHNIQUES

FOR PNT APPLICATIONS

Automated Software Engineering

Verification/Testing of AI/ML Applications

• AI applications are
data-oriented systems

• Complex, dynamic
environment

• Novel generation +
Advanced simulators
→ Diverse tests

• Systematic testing of
AI applications

31

front

left

visible

visib
le

Recent Results

• R&D project
with Knorr-Bremse

• Research project with
USA Navy

Office of Naval Research Global

Automated Software Engineering

Advancing DLT applications

Recent results• Hungarian Blockchain Coalition

– Prof. Pataricza – member of the board

– I. Kocsis: Education WG lead, L. Gönczy: FinTech WG

• Supporting the EMAP project (PM/NAV)

– “Even-based Data-sharing Platform” pilot

– Employer data provisions: event-based, single-channel

– Blockchain-based implementation in preparation

• CBDC research cooperation with MNB

– Mapping out: blockchain  Central Bank Digital Currency

– Payment, car leasing, energy support, industrial cooperation

– Currently: “ecosystem” research

• EDGE-Skills: data veracity in EU data spaces

– Blockchain-backed Verifiable Credentials

Energy price support
CBDC prototype: BIS

Rosalind finalist

32

Fabric  Ethereum
CBDC bridge in

Hyperledger Cacti

Smart gas meters and
readings – in

production

• Friday 14:30 (FAME) – Refinery hands-on session

• Sunday 16:00 (Super Mario Bros)
T9: Refinery: Logic-based partial modeling

• Wednesday 15:24 (HS7 – Applications 1)
Ulf Kargén, Dániel Varró. Towards Automated Test Scenario Generation for Assuring
COLREGs Compliance of Autonomous Surface Vehicles
– Find inconsistencies in maritime traffic rules with partial modeling

• Thursday 15:45 (HS1 – MDE&AI)
José Antonio Hernández López, Máté Földiák, Dániel Varró. Text2VQL: Teaching a
Model Query Language to Open-Source Language Models with ChatGPT
– Generate graph models to verify graph queries generated by ChatGPT

• Thursday 15:45 (HS7 – Applications 2)
Noor Al-Gburi, András Földvári, Kristóf Marussy, Oszkár Semeráth, Imre Kocsis.
Requirement-Driven Generation of Distributed Ledger Architectures
– Generate architectures for consortial blockchain systems

Refinery@MODELS2024

Refinery@FAME24 33

Refinery@FAME24

Specification language

•K. Marussy, O. Semeráth, A. Babikian, D. Varró: A Specification Language for Consistent Model Generation based on Partial Models.
J. Object Technol. 19(3): 3:1-22 (2020)

Consistent graph generation techniques

•O. Semeráth, A. Nagy, D. Varró: A graph solver for the automated generation of consistent domain-specific models. ICSE 2018: 969-980

•K. Marussy, O. Semeráth, D. Varró: Automated Generation of Consistent Graph Models With Multiplicity Reasoning.
IEEE Trans. Software Eng. 48(5): 1610-1629 (2022)

•A.. Babikian, O. Semeráth, A. Li, K. Marussy, D. Varró: Automated generation of consistent models using qualitative abstractions and
exploration strategies. Softw. Syst. Model. 21(5): 1763-1787 (2022)

Diverse and realistic graph generation

•O. Semeráth, R. Farkas, G. Bergmann, D. Varró: Diversity of graph models and graph generators in mutation testing.
Int. J. Softw. Tools Technol. Transf. 22(1): 57-78 (2020)

•O. Semeráth, A. Babikian, B. Chen, C. Li, K. Marussy, G. Szárnyas, D. Varró: Automated generation of consistent, diverse and structurally
realistic graph models. Softw. Syst. Model. 20(5): 1713-1734 (2021)

Correctness proofs

•D. Varró, O. Semeráth, G. Szárnyas, Á. Horváth: Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph
Models. Graph Transformation, Specifications, and Nets 2018: 285-312

Further Information

34

Summary

Refinery@FAME24

• Logic reasoning and model generation over graphs

• Web-based editor:
• Live editing and feedback

• Support for partial models and graph constraints

• Containerized execution:
• Continuously deployed at https://refinery.services

• Available as Docker image: https://refinery.tools/learn/docker/

• Open-source project: https://refinery.tools

35

https://refinery.services/
https://refinery.tools/

	Slide 1: Refinery: Model generation with partial model refinement
	Slide 2: Modeling with Graphs
	Slide 3: Hands-on demo
	Slide 4: Graph Structure: Project
	Slide 5: Graph Structure: Project
	Slide 6: Consistent Graph Generation
	Slide 7: Overview of Refinery Demo
	Slide 8: Domain-specific partial models
	Slide 9: Models and Partial Models
	Slide 10: Partial Modeling with 4-valued Logic
	Slide 11: Partial modeling with 4-valued logic
	Slide 12: Partial modeling with 4-valued logic
	Slide 13: Partial modeling with 4-valued logic
	Slide 14: Partial modeling with 4-valued logic
	Slide 15: Partial modeling with 4-valued logic
	Slide 16: Partial modeling with 4-valued logic
	Slide 17: Partial modeling with 4-valued logic
	Slide 18: Partial modeling with 4-valued logic
	Slide 19: Partial modeling with 4-valued logic
	Slide 20: Partial modeling with 4-valued logic
	Slide 21: Partial modeling with 4-valued logic
	Slide 22: Partial modeling with 4-valued logic
	Slide 23: Refinement: 4-valued Logic
	Slide 24: Constraint specification
	Slide 25: Search Parameters for Model Generation
	Slide 26: Graph Constraint Evaluation
	Slide 27: Partial Graph Constraint Evaluation
	Slide 28: Predicates vs Constraints
	Slide 29: Refinery elsewhere
	Slide 30: Graph analysis and synthesis
	Slide 31: Verification/Testing of AI/ML Applications
	Slide 32: Advancing DLT applications
	Slide 33: Refinery@MODELS2024
	Slide 34: Further Information
	Slide 35: Summary

